


1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.3

1.3.1

1.3.2

1.3.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.7

1.8

Table	of	Contents
Introduction

Why	QUIC

Remember	HTTP/2

TCP	head	of	line	blocking

TCP	or	UDP

Ossification

Secure

Reduced	latency

Process

IETF

Experience	from	HTTP/2

Status

Protocol	features

UDP

Reliable

Streams

In	Order

Fast	handshakes

TLS	1.3

Transport	and	application

HTTP/3	over	QUIC

Non-HTTP	over	QUIC

How	QUIC	works

Connections

Connections	use	TLS

Streams

0-RTT

Spin	Bit

User	space

API

HTTP/3

HTTPS://	URLs

Bootstrap	with	Alt-svc

QUIC	streams	and	HTTP/3

Prioritization

Server	push

Comparison	with	HTTP/2

Common	criticism

The	specifications

2



1.9QUIC	v2

3



HTTP/3	explained
This	book	effort	was	started	in	March	2018.	The	plan	is	to	document	HTTP/3	and	its	underlying	protocol:	QUIC.	Why,	how
they	work,	protocol	details,	the	implementations	and	more.

The	book	is	entirely	free	and	is	meant	to	be	a	collaborative	effort	involving	anyone	and	everyone	who	wants	to	help	out.

Prerequisites
A	reader	of	this	book	is	presumed	to	have	a	basic	understanding	of	TCP/IP	networking,	the	fundamentals	of	HTTP	and	the
web.	For	further	insights	and	specifics	about	HTTP/2	we	recommend	first	reading	up	the	details	in	http2	explained.

Author
This	book	is	created	and	the	work	is	started	by	Daniel	Stenberg.	Daniel	is	the	founder	and	lead	developer	of	curl,	the
world's	most	widely	used	HTTP	client	software.	Daniel	has	worked	with	and	on	HTTP	and	internet	protocols	for	over	two
decades	and	is	the	author	of	http2	explained.

Home
The	home	page	for	this	book	is	found	at	daniel.haxx.se/http3-explained.

Help	out
If	you	find	mistakes,	omissions,	errors	or	blatant	lies	in	this	document,	please	send	us	a	refreshed	version	of	the	affected
paragraph	and	we	will	make	amended	versions.	We	will	give	proper	credits	to	everyone	who	helps	out.	I	hope	to	make	this
document	better	over	time.

Preferably,	you	submit	errors	or	pull	requests	on	the	book's	github	page.

License
This	document	and	all	its	contents	are	licensed	under	the	Creative	Commons	Attribution	4.0	license.

Introduction

4

https://daniel.haxx.se/http2/
https://daniel.haxx.se/
https://curl.haxx.se/
https://daniel.haxx.se/http2/
https://daniel.haxx.se/http3-explained
https://github.com/bagder/http3-explained/issues
https://github.com/bagder/http3-explained/pulls
https://creativecommons.org/licenses/by/4.0/


Why	QUIC
QUIC	is	a	name,	not	an	acronym.	It	is	pronounced	exactly	like	the	English	word	"quick".

QUIC	is	in	many	ways	what	could	be	seen	as	a	way	of	doing	a	new	reliable	and	secure	transport	protocol	that	is	suitable
for	a	protocol	like	HTTP	and	that	can	address	some	of	the	known	shortcomings	of	doing	HTTP/2	over	TCP	and	TLS.	The
logical	next	step	in	the	web	transport	evolution.

QUIC	is	not	limited	to	just	transporting	HTTP.	The	desire	to	make	the	web	and	data	in	general	delivered	faster	to	end	users
is	probably	the	largest	reason	and	push	that	initially	triggered	the	creation	of	this	new	transport	protocol.

So	why	create	a	new	transport	protocol	and	why	do	it	on	top	of	UDP?

Why	QUIC

5



Remember	HTTP/2?
The	HTTP/2	specification	RFC	7540	was	published	in	May	2015	and	the	protocol	has	since	then	been	implemented	and
deployed	widely	across	the	Internet	and	the	World	Wide	Web.

In	early	2018,	almost	40%	of	the	top-1000	web	sites	run	HTTP/2,	around	70%	of	all	HTTPS	requests	Firefox	issues	get
HTTP/2	responses	back	and	all	major	browsers,	servers	and	proxies	support	it.

HTTP/2	addresses	a	whole	slew	of	shortcomings	in	HTTP/1	and	with	the	introduction	of	the	second	version	of	HTTP	users
can	stop	using	a	bunch	of	work-arounds.	Some	of	which	are	pretty	burdensome	on	web	developers.

One	of	the	primary	features	of	HTTP/2	is	that	it	makes	use	of	multiplexing,	so	that	many	logical	streams	are	sent	over	the
same	physical	TCP	connection.	This	makes	a	lot	of	things	better	and	faster.	It	makes	congestion	control	work	much	better,
it	lets	users	use	TCP	much	better	and	thus	properly	saturate	the	bandwidth,	makes	the	TCP	connections	more	long-lived	-
which	is	good	so	that	they	get	up	to	full	speed	more	frequently	than	before.	Header	compression	makes	it	use	less
bandwidth.

With	HTTP/2,	browsers	typically	use	one	TCP	connection	to	each	host	instead	of	the	previous	six.	In	fact,	connection
coalescing	and	"desharding"	techniques	used	with	HTTP/2	may	actually	even	reduce	the	number	of	connections	much
more	than	so.

HTTP/2	fixed	the	HTTP	head	of	line	blocking	problem,	where	clients	had	to	wait	for	the	first	request	in	line	to	finish	before
the	next	one	could	go	out.

Remember	HTTP/2

6

https://httpwg.org/specs/rfc7540.html


TCP	head	of	line	blocking
HTTP/2	is	done	over	TCP	and	with	much	fewer	TCP	connections	than	when	using	earlier	HTTP	versions.	TCP	is	a	protocol
for	reliable	transfers	and	you	can	basically	think	of	it	as	an	imaginary	chain	between	two	machines.	What	is	being	put	out
on	the	network	in	one	end	will	end	up	in	the	other	end,	in	the	same	order	-	eventually.	(Or	the	connection	breaks.)

With	HTTP/2,	typical	browsers	do	tens	or	hundreds	of	parallel	transfers	over	a	single	TCP	connection.

If	a	single	packet	is	dropped,	or	lost	in	the	network	somewhere	between	two	endpoints	that	speak	HTTP/2,	it	means	the
entire	TCP	connection	is	brought	to	a	halt	while	the	lost	packet	is	re-transmitted	and	finds	its	way	to	the	destination.	Since
TCP	is	this	"chain",	it	means	that	if	one	link	is	suddenly	missing,	everything	that	would	come	after	the	lost	link	needs	to
wait.

An	illustration	using	the	chain	metaphor	when	sending	two	streams	over	this	connection.	A	red	stream	and	a	green	stream:

It	becomes	a	TCP-based	head	of	line	block!

As	the	packet	loss	rate	increases,	HTTP/2	performs	less	and	less	well.	At	2%	packet	loss	(which	is	a	terrible	network
quality,	mind	you),	tests	have	proven	that	HTTP/1	users	are	usually	better	off	-	because	they	typically	have	up	to	six	TCP
connections	to	distribute	lost	packets	over.	This	means	for	every	lost	packet	the	other	connections	can	still	continue.

Fixing	this	issue	is	not	easy,	if	at	all	possible,	with	TCP.

Independent	streams	avoids	the	block
With	QUIC	there	is	still	a	connection	setup	between	the	two	end-points	that	makes	the	connection	secure	and	the	data
delivery	reliable.

When	setting	up	two	different	streams	over	this	connection,	they	are	treated	independently	so	that	if	any	link	goes	missing
for	one	of	the	streams,	only	that	stream,	that	particular	chain,	has	to	pause	and	wait	for	the	missing	link	to	get
retransmitted.

Illustrated	here	with	one	yellow	and	one	blue	stream	sent	between	two	end-points.

TCP	head	of	line	blocking

7



TCP	head	of	line	blocking

8



TCP	or	UDP
If	we	can't	fix	head-of-line	blocking	within	TCP,	then	in	theory	we	should	be	able	to	make	a	new	transport	protocol	next	to
UDP	and	TCP	in	the	network	stack.	Or	perhaps	even	use	SCTP	which	is	a	transport	protocol	standardized	by	the	IETF	in
RFC	4960	with	several	of	the	desired	characteristics.

However,	in	recent	years	efforts	to	create	new	transport	protocols	have	almost	entirely	been	halted	because	of	the
difficulties	in	deploying	them	on	the	Internet.	Deployment	of	new	protocols	is	hampered	by	many	firewalls,	NATs,	routers
and	other	middle-boxes	that	only	allow	TCP	or	UDP	are	deployed	between	users	and	the	servers	they	need	to	reach.
Introducing	another	transport	protocol	makes	N%	of	the	connections	fail	because	they	are	being	blocked	by	boxes	that	see
it	not	being	UDP	or	TCP	and	thus	evil	or	wrong	somehow.	The	N%	failure	rate	is	often	deemed	too	high	to	be	worth	the
effort.

Additionally,	changing	things	in	the	transport	protocol	layer	of	the	network	stack	typically	means	protocols	implemented	by
operating	system	kernels.	Updating	and	deploying	new	operating	system	kernels	is	a	slow	process	that	requires	significant
effort.	Many	TCP	improvements	standardized	by	the	IETF	are	not	widely	deployed	or	used	because	they	are	not	broadly
supported.

Why	not	SCTP-over-UDP
SCTP	is	a	reliable	transport	protocol	with	streams,	and	for	WebRTC	there	are	even	existing	implementations	using	it	over
UDP.

This	was	not	deemed	good	enough	as	a	QUIC	alternative	due	to	several	reasons,	including:

SCTP	does	not	fix	the	head-of-line-blocking	problem	for	streams
SCTP	requires	the	number	of	streams	to	be	decided	at	connection	setup
SCTP	does	not	have	a	solid	TLS/security	story
SCTP	has	a	4-way	handshake,	QUIC	offers	0-RTT
QUIC	is	a	bytestream	like	TCP,	SCTP	is	message-based
QUIC	connections	can	migrate	between	IP	addresses	but	SCTP	cannot

For	more	details	on	the	differences,	see	A	Comparison	between	SCTP	and	QUIC.

TCP	or	UDP

9

https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
https://tools.ietf.org/html/rfc4960
https://tools.ietf.org/html/draft-joseph-quic-comparison-quic-sctp-00


Ossification
The	internet	is	a	network	of	networks.	There	is	equipment	set	up	on	the	Internet	in	many	different	places	along	the	way	to
make	sure	this	network	of	networks	works	as	it	is	supposed	to.	These	devices,	the	boxes	that	are	distributed	out	in	the
network,	are	what	we	sometimes	refer	to	as	middle-boxes.	Boxes	that	sit	somewhere	between	the	two	end-points	that	are
the	primary	parties	involved	in	a	traditional	network	data	transfer.

These	boxes	serve	many	different	specific	purposes	but	I	think	we	can	say	that	universally	they	are	put	there	because
someone	thinks	they	must	be	there	to	make	things	work.

Middle-boxes	route	IP	packets	between	networks,	they	block	malicious	traffic,	they	do	NAT	(Network	Address	Translation),
they	improve	performance,	some	try	to	spy	on	the	passing	traffic	and	more.

In	order	to	perform	their	duties	these	boxes	must	know	about	networking	and	the	protocols	that	are	monitored	or	modified
by	them.	They	run	software	for	this	purpose.	Software	that	is	not	always	upgraded	frequently.

While	they	are	glue	components	that	keep	the	Internet	together	they	are	also	often	not	keeping	up	with	the	latest
technology.	The	middle	of	the	network	typically	does	not	move	as	fast	as	the	edges,	as	the	clients	and	the	servers	of	the
world.

The	network	protocols	that	these	boxes	might	want	to	inspect,	and	have	ideas	about	what	is	okay	and	what	is	not	then
have	this	problem:	these	boxes	were	deployed	some	time	ago	when	the	protocols	had	a	feature	set	of	that	time.
Introducing	new	features	or	changes	in	behavior	that	were	not	known	before	risks	ending	up	considered	bad	or	illegal	by
such	boxes.	Such	traffic	may	well	just	be	dropped	or	delayed	to	the	degree	that	users	really	do	not	want	to	use	those
features.

This	is	called	"protocol	ossification".

Changes	to	TCP	also	suffer	from	ossification:	some	boxes	between	a	client	and	the	remote	server	will	spot	unknown	new
TCP	options	and	block	such	connections	since	they	do	not	know	what	the	options	are.	If	allowed	to	detect	protocol	details,
systems	learn	how	protocols	typically	behave	and	over	time	it	becomes	impossible	to	change	them.

The	only	truly	effective	way	to	"combat"	ossification	is	to	encrypt	as	much	of	the	communication	as	possible	in	order	to
prevent	middle-boxes	from	seeing	much	of	the	protocol	passing	through.

Ossification

10



Secure
QUIC	is	always	secure.	There	is	no	clear-text	version	of	the	protocol	so	to	negotiate	a	QUIC	connection	means	doing
cryptography	and	security	with	TLS	1.3.	As	mentioned	above,	this	prevents	ossification	as	well	as	other	sorts	of	blocks	and
special	treatments,	as	well	as	making	sure	QUIC	has	all	the	secure	properties	of	HTTPS	that	web	users	have	come	to
expect	and	want.

There	are	only	a	few	initial	handshake	packets	that	are	sent	in	the	clear	before	the	encryption	protocols	have	been
negotiated.

Secure

11



Earlier	data
QUIC	offers	both	0-RTT	and	1-RTT	handshakes	that	reduce	the	time	it	takes	to	negotiate	and	setup	a	new	connection.
Compare	with	the	3-way	handshake	of	TCP.

In	addition	to	that,	QUIC	offers	"early	data"	support	from	the	get	go	which	is	done	to	allow	more	data	and	it	is	used	more
easily	than	TCP	Fast	Open.

With	the	stream	concept,	another	logical	connection	to	the	same	host	can	be	done	at	once	without	having	to	wait	for	the
existing	one	to	end	first.

TCP	Fast	Open	is	problematic
TCP	Fast	Open	was	published	as	RFC	7413	in	December	2014	and	that	specification	describes	how	applications	can	pass
data	to	the	server	to	be	delivered	already	in	the	first	TCP	SYN	packet.

Actual	support	for	this	feature	in	the	wild	has	taken	time	and	is	riddled	with	problems	even	today	in	2018.	The	TCP	stack
implementors	have	had	issues	and	so	have	applications	trying	to	take	advantage	of	this	feature	-	both	in	knowing	in	which
OS	version	to	try	to	activate	it	but	also	in	figuring	out	how	to	gracefully	back	down	and	deal	when	problems	arise.	Several
networks	have	been	identified	to	interfere	with	TFO	traffic	and	they	have	thus	actively	ruined	such	TCP	handshakes.

Reduced	latency

12

https://tools.ietf.org/html/rfc7413


Process
The	initial	QUIC	protocol	was	designed	by	Jim	Roskind	at	Google	and	was	initially	implemented	in	2012,	announced
publicly	to	the	world	in	2013	when	Google's	experimentation	broadened.

Back	then,	QUIC	was	still	claimed	to	be	an	acronym	for	"Quick	UDP	Internet	Connections",	but	that	has	been	dropped
since	then.

Google	implemented	the	protocol	and	subsequently	deployed	it	both	in	their	widely	used	browser	(Chrome)	and	in	their
widely	used	server-side	services	(Google	search,	gmail,	youtube	and	more).	They	iterated	protocol	versions	fairly	quickly
and	over	time	they	proved	the	concept	to	work	reliably	for	a	vast	portion	of	users.

In	June	2015,	the	first	internet	draft	for	QUIC	was	sent	to	the	IETF	for	standardization,	but	it	took	until	late	2016	for	a	QUIC
working	group	to	get	approved	and	started.	But	then	it	took	off	immediately	with	a	high	degree	of	interest	from	many
parties.

In	2017,	numbers	quoted	by	QUIC	engineers	at	Google	mentioned	that	around	7%	of	all	Internet	traffic	were	already	using
this	protocol.	The	Google	version	of	the	protocol.

Process

13



IETF
The	QUIC	working	group	that	was	established	to	standardize	the	protocol	within	the	IETF	quickly	decided	that	the	QUIC
protocol	should	be	able	to	transfer	other	protocols	than	"just"	HTTP.	Google-QUIC	only	ever	transported	HTTP	-	in	practice
it	transported	what	was	effectively	HTTP/2	frames,	using	the	HTTP/2	frame	syntax.

It	was	also	stated	that	IETF-QUIC	should	base	its	encryption	and	security	on	TLS	1.3	instead	of	the	"custom"	approach
used	by	Google-QUIC.

In	order	to	satisfy	the	send-more-than-HTTP	demand,	the	IETF	QUIC	protocol	architecture	was	split	in	two	separate	layers:
the	transport	QUIC	and	the	"HTTP	over	QUIC"	layer	(the	latter	sometimes	referred	to	as	"hq").

This	layer	split,	while	it	may	sound	innocuous,	has	caused	the	IETF-QUIC	to	differ	quite	a	lot	from	the	original	Google-
QUIC.

The	working	group	did	however	soon	decide	that	in	order	to	get	the	proper	focus	and	ability	to	deliver	QUIC	version	1	on
time,	it	would	focus	on	delivering	HTTP,	leaving	non-HTTP	transports	to	later	work.

In	March	2018	when	we	started	working	on	this	book,	the	plan	was	to	ship	the	final	specification	for	QUIC	version	1	in
November	2018;	this	was	later	postponed	to	July	2019.

While	the	work	on	IETF-QUIC	has	progressed,	the	Google	team	has	incorporated	details	from	the	IETF	version	and	has
started	to	slowly	progress	their	version	of	the	protocol	towards	what	the	IETF	version	might	become.	Google	has	continued
using	their	version	of	QUIC	in	their	browser	and	services.

Most	new	implementations	under	development	have	decided	to	focus	on	the	IETF	version	and	are	not	compatible	with	the
Google	version.

IETF

14

https://github.com/quicwg/base-drafts/wiki/Implementations


Experience	from	HTTP/2
The	HTTP/2	specification	RFC	7540	was	published	in	May	2015,	just	a	month	before	QUIC	was	brought	to	IETF	for	the	first
time.

With	HTTP/2,	the	foundation	for	changing	HTTP	over	the	wire	was	laid	out	and	the	working	group	that	created	HTTP/2	was
already	of	the	mindset	that	this	would	help	iterating	to	new	HTTP	versions	much	faster	than	it	had	taken	to	go	to	version	2
from	version	1	(about	16	years).

With	HTTP/2,	users	and	software	stacks	got	used	to	the	idea	that	HTTP	can	no	longer	be	assumed	to	be	done	with	a	text-
based	protocol	in	a	serial	manner.

HTTP-over-QUIC	was	renamed	to	HTTP/3	in	November	2018.

Experience	from	HTTP/2

15



Status
The	QUIC	working	group	has	worked	fiercely	since	late	2016	on	specifying	the	protocols	and	the	plan	is	now	to	have	it
done	by	July	2019.

As	of	November	2018,	there	still	has	not	been	any	larger	interoperability	tests	with	HTTP/3	-	only	with	the	existing	two
implementations	and	none	of	them	are	done	by	a	browser	or	a	popular	open	server	software.

There	are	fifteen	or	so	different	QUIC	implementations	listed	in	the	QUIC	working	groups'	wiki	pages,	but	far	from	all	of
them	can	interoperate	on	the	latest	spec	draft	revisions.

Implementing	QUIC	is	not	easy	and	the	protocol	has	kept	moving	and	changing	even	up	to	this	date.

Servers
NGINX	support	for	QUIC	and	HTTP/3	is	under	development.	It	is	planned	to	be	released	during	NGINX	1.17	development
cycle.

There	have	been	no	public	statement	in	terms	of	support	for	QUIC	from	Apache.

Clients
None	of	the	larger	browser	vendors	have	yet	shipped	any	version,	at	any	state,	that	can	run	the	IETF	version	of	QUIC	or
HTTP/3.

Google	Chrome	has	shipped	with	a	working	implementation	of	Google's	own	QUIC	version	since	many	years,	but	that	does
not	interoperate	with	the	IETF	QUIC	protocol	and	its	HTTP	implementation	is	different	than	HTTP/3.

Mozilla	is	developing	Neqo	-	a	QUIC	and	HTTP/3	implementation	written	in	Rust.	Neqo	is	planned	to	be	integrated	in
Necko	(which	is	a	network	library	used	in	many	Mozilla-based	client	applications	-	including	Firefox).

curl	shipped	the	first	experimental	HTTP/3	support	(draft-22)	in	the	7.66.0	release	on	September	11,	2019.	curl	uses	either
the	Quiche	library	from	Cloudflare	or	the	ngtcp2	family	of	libraries	to	get	the	work	done.

Implementation	Obstacles
QUIC	decided	to	use	TLS	1.3	as	the	foundation	for	the	crypto	and	security	layer	to	avoid	inventing	something	new	and
instead	lean	on	a	trustworthy	and	existing	protocol.	However,	while	doing	this,	the	working	group	also	decided	that	to	really
streamline	the	use	of	TLS	in	QUIC,	it	should	only	use	"TLS	messages"	and	not	"TLS	records"	for	the	protocol.

This	might	sound	like	an	innocuous	change,	but	this	has	actually	caused	a	significant	hurdle	for	many	QUIC	stack
implementors.	Existing	TLS	libraries	that	support	TLS	1.3	simply	do	not	have	APIs	enough	to	expose	this	functionality	and
allow	QUIC	to	access	it.	While	several	QUIC	implementors	come	from	larger	organizations	who	work	on	their	own	TLS
stack	in	parallel,	this	is	not	true	for	everyone.

The	dominant	open	source	heavyweight	OpenSSL	for	example,	does	not	have	any	API	for	this.	The	plan	to	address	this
seems	to	happn	in	their	PR	8797	that	aims	to	introduce	an	API	that	is	very	similar	to	the	one	of	BoringSSL.

This	will	eventually	also	lead	to	deployment	obstacles	since	QUIC	stacks	will	need	to	either	base	themselves	on	other	TLS
libraries,	use	a	separate	patched	OpenSSL	build	or	require	an	update	to	a	future	OpenSSL	version.

Kernels	and	CPU	load

Status

16

https://github.com/curl/curl/wiki/QUIC-implementation
https://trac.nginx.org/nginx/milestone/nginx-1.17
https://github.com/mozilla/neqo/
https://www.rust-lang.org/
https://github.com/mozilla/neqo/issues/10
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Necko
https://github.com/openssl/openssl/pull/8797


Both	Google	and	Facebook	have	mentioned	that	their	wide	scale	deployments	of	QUIC	require	roughly	twice	the	amount	of
CPU	than	the	same	traffic	load	does	when	serving	HTTP/2	over	TLS.

Some	explanations	for	this	include

the	UDP	parts	in	primarily	Linux	is	not	at	all	as	optimized	as	the	TCP	stack	is,	since	it	has	not	traditionally	been	used
for	high	speed	transfers	like	this.

TCP	and	TLS	offloading	to	hardware	exist,	but	that	is	much	rarer	for	UDP	and	basically	non-existing	for	QUIC.

There	are	reasons	to	believe	that	performance	and	CPU	requirements	will	improve	over	time.

Status

17



Protocol	features
The	QUIC	protocol	from	a	high	level.

Illustrated	below	is	the	HTTP/2	network	stack	on	the	left	and	the	QUIC	network	stack	on	the	right,	when	used	as	HTTP
transport.

Protocol	features

18



Transfer	protocol	over	UDP
QUIC	is	a	transfer	protocol	implemented	on	top	of	UDP.	If	you	watch	your	network	traffic	casually,	you	will	see	QUIC	appear
as	UDP	packets.

Based	on	UDP	it	also	then	uses	UDP	port	numbers	to	identify	specific	network	services	on	a	given	IP	address.

All	known	QUIC	implementations	are	currently	in	user-space,	which	allows	for	more	rapid	evolution	than	kernel-space
implementations	typically	allow.

Will	it	work?
There	are	enterprises	and	other	network	setups	that	block	UDP	traffic	on	other	ports	than	53	(used	for	DNS).	Others	throttle
such	data	in	ways	that	makes	QUIC	perform	worse	than	TCP	based	protocols.	There	is	no	end	to	what	some	operators
may	do.

For	the	foreseeable	future,	all	use	of	QUIC-based	transports	will	probably	have	to	be	able	to	gracefully	fall-back	to	another
(TCP-based)	alternative.	Google	engineers	have	previously	mentioned	measured	failure	rates	in	the	low	single-digit
percentages.

Will	it	improve?
Chances	are	that	if	QUIC	proves	to	be	a	valuable	addition	to	the	Internet	world,	people	will	want	to	use	it	and	they	will	want
it	to	function	in	their	networks	and	then	companies	may	start	to	reconsider	their	obstacles.	During	the	years	the
development	of	QUIC	has	progressed,	the	success	rate	for	establishing	and	using	QUIC	connections	across	the	Internet
has	increased.

UDP

19



Reliable	data	transfers
While	UDP	is	not	a	reliable	transport,	QUIC	adds	a	layer	on	top	of	UDP	that	introduces	reliability.	It	offers	re-transmissions
of	packets,	congestion	control,	pacing	and	the	other	features	otherwise	present	in	TCP.

Data	sent	over	QUIC	from	one	end-point	will	appear	in	the	other	end	sooner	or	later,	as	long	as	the	connection	is
maintained.

Reliable

20



Multiple	streams	within	connections
Similar	to	SCTP,	SSH	and	HTTP/2,	QUIC	features	separate	logical	streams	within	the	physical	connections.	A	number	of
parallel	streams	that	can	transfer	data	simultaneously	over	a	single	connection	without	affecting	the	other	streams.

A	connection	is	a	negotiated	setup	between	two	end-points	similar	to	how	a	TCP	connection	works.	A	QUIC	connection	is
made	to	a	UDP	port	and	IP	address,	but	once	established	the	connection	is	associated	by	its	"connection	ID".

Over	an	established	connection,	either	side	can	create	streams	and	send	data	to	the	other	end.	Streams	are	delivered	in-
order	and	they	are	reliable,	but	different	streams	may	be	delivered	out-of-order.

QUIC	offers	flow	control	on	both	connection	and	streams.

See	further	details	in	connections	and	streams	sections

Streams

21



In	order	delivery
QUIC	guarantees	in-order	delivery	of	streams,	but	not	between	streams.	This	means	that	each	stream	will	send	data	and
maintain	data	order,	but	each	stream	may	reach	the	destination	in	a	different	order	than	the	application	sent	it!

For	example:	stream	A	and	B	are	transferred	from	a	server	to	a	client.	Stream	A	is	started	first	and	then	stream	B.	In	QUIC,
a	lost	packet	only	affects	the	stream	to	which	the	lost	packet	belongs.	If	stream	A	loses	a	packet	but	stream	B	does	not,
stream	B	may	continue	its	transfers	and	complete	while	stream	A's	lost	packet	is	re-transmitted.	This	was	not	possible	with
HTTP/2.

Illustrated	here	with	one	yellow	and	one	blue	stream	sent	between	two	QUIC	end-points	over	a	single	connection.	They	are
independent	and	may	arrive	in	a	different	order,	but	each	stream	is	reliably	delivered	to	the	application	in	order.

In	Order

22



Fast	handshakes
QUIC	offers	both	0-RTT	and	1-RTT	connection	setups,	meaning	that	at	best	QUIC	needs	no	extra	round-trips	at	all	when
setting	up	a	new	connection.	The	faster	of	those	two,	the	0-RTT	handshake,	only	works	if	there	has	been	a	previous
connection	established	to	a	host	and	a	secret	from	that	connection	has	been	cached.

Early	data
QUIC	allows	a	client	to	include	data	already	in	the	0-RTT	handshake.	This	feature	allows	a	client	to	deliver	data	to	the	peer
as	fast	as	it	possibly	can,	and	that	then	of	course	allows	the	server	to	respond	and	send	data	back	even	sooner.

Fast	handshakes

23



TLS	1.3
The	transport	security	used	in	QUIC	is	using	TLS	1.3	(RFC	8446)	and	there	are	never	any	unencrypted	QUIC	connections.

TLS	1.3	has	several	advantages	compared	to	older	TLS	versions	but	a	primary	reason	for	using	it	in	QUIC	is	that	1.3
changed	the	handshake	to	require	fewer	roundtrips.	It	reduces	protocol	latency.

The	Google	legacy	version	of	QUIC	used	a	custom	crypto.

TLS	1.3

24

https://tools.ietf.org/html/rfc8446


Transport	and	application	level
The	IETF	QUIC	protocol	is	a	transport	protocol,	on	top	of	which	other	application	protocols	can	be	used.	The	initial
application	layer	protocol	is	HTTP/3	(h3).

The	transport	layer	supports	connections	and	streams.

The	legacy	Google	version	of	QUIC	had	transport	and	HTTP	glued	together	into	one	single	do-it-all	and	was	a	more
special-purpose	send-http/2-frames-over-udp	protocol.

Transport	and	application

25



HTTP/3	over	QUIC
The	HTTP	layer,	called	HTTP/3,	does	HTTP-style	transports,	including	HTTP	header	compression	using	QPACK	-	which	is
similar	to	the	HTTP/2	compression	named	HPACK.

The	HPACK	algorithm	depends	on	an	ordered	delivery	of	streams	so	it	was	not	possible	to	reuse	it	for	HTTP/3	without
modifications	since	QUIC	offers	streams	that	can	be	delivered	out	of	order.	QPACK	can	be	seen	as	the	QUIC-adapted
version	of	HPACK.

HTTP/3	over	QUIC

26

https://httpwg.org/specs/rfc7541.html


Non-HTTP	over	QUIC
The	work	on	sending	protocols	other	than	HTTP	over	QUIC	has	been	postponed	until	after	QUIC	version	1	has	shipped.

Non-HTTP	over	QUIC

27



How	QUIC	works
Without	explaining	the	exact	bits	and	bytes	on	the	wire,	this	section	describes	how	the	fundamental	building	blocks	of	the
QUIC	transport	protocol	work.	If	you	want	to	implement	your	own	QUIC	stack,	this	description	should	give	you	a	general
understanding,	but	for	all	the	details,	refer	to	the	actual	IETF	Internet	Drafts	and	RFCs.

1.	 Set	up	a	connection
2.	 ...	that	includes	TLS	security
3.	 Then	use	streams

How	QUIC	works

28



Connections
A	QUIC	connection	is	a	single	conversation	between	two	QUIC	endpoints.	QUIC's	connection	establishment	combines
version	negotiation	with	the	cryptographic	and	transport	handshakes	to	reduce	connection	establishment	latency.

To	actually	send	data	over	such	a	connection,	one	or	more	streams	have	to	be	created	and	used.

Connection	ID
Each	connection	possesses	a	set	of	connection	identifiers,	or	connection	IDs,	each	of	which	can	be	used	to	identify	the
connection.	Connection	IDs	are	independently	selected	by	endpoints;	each	endpoint	selects	the	connection	IDs	that	its
peer	uses.

The	primary	function	of	these	connection	IDs	is	to	ensure	that	changes	in	addressing	at	lower	protocol	layers	(UDP,	IP,	and
below)	do	not	cause	packets	for	a	QUIC	connection	to	be	delivered	to	the	wrong	endpoint.

By	taking	advantage	of	the	connection	ID,	connections	can	thus	migrate	between	IP	addresses	and	network	interfaces	in
ways	TCP	never	could.	For	instance,	migration	allows	an	in-progress	download	to	move	from	a	cellular	network	connection
to	a	faster	wifi	connection	when	the	user	moves	their	device	into	a	location	offering	wifi.	Similarly,	the	download	can
proceed	over	the	cellular	connection	if	wifi	becomes	unavailable.

Port	numbers
QUIC	is	built	atop	UDP,	so	a	16	bit	port	number	field	is	used	to	differentiate	incoming	connections.

Version	negotiation
An	QUIC	connection	request	originating	from	a	client	will	tell	the	server	which	QUIC	protocol	version	it	wants	to	speak,	and
the	server	will	respond	with	a	list	of	supported	versions	for	the	client	to	select	from.

Connections

29



Connections	use	TLS
Immediately	after	the	initial	packet	setting	up	a	connection,	the	initiator	sends	a	crypto	frame	that	starts	setting	up	the
secure	layer	handshake.	The	security	layer	uses	TLS	1.3	security.

There	is	no	way	to	opt-out	or	avoid	using	TLS	for	a	QUIC	connection.	The	protocol	is	designed	to	be	hard	for	middle-boxes
to	tamper	with,	in	order	to	help	prevent	ossification	of	the	protocol.

Connections	use	TLS

30



Streams
Streams	in	QUIC	provide	a	lightweight,	ordered	byte-stream	abstraction.

There	are	two	basic	types	of	stream	in	QUIC:

Unidirectional	streams	carry	data	in	one	direction:	from	the	initiator	of	the	stream	to	its	peer.

Bidirectional	streams	allow	for	data	to	be	sent	in	both	directions.

Either	type	of	stream	can	be	created	by	either	endpoint,	can	concurrently	send	data	interleaved	with	other	streams,	and
can	be	canceled.

To	send	data	over	a	QUIC	connection,	one	or	more	streams	are	used.

Flow	control
Streams	are	individually	flow	controlled,	allowing	an	endpoint	to	limit	memory	commitment	and	to	apply	back	pressure.	The
creation	of	streams	is	also	flow	controlled,	with	each	peer	declaring	the	maximum	stream	ID	it	is	willing	to	accept	at	a	given
time.

Stream	Identifiers
Streams	are	identified	by	an	unsigned	62-bit	integer,	referred	to	as	the	Stream	ID.	The	least	significant	two	bits	of	the
Stream	ID	are	used	to	identify	the	type	of	stream	(unidirectional	or	bidirectional)	and	the	initiator	of	the	stream.

The	least	significant	bit	(0x1)	of	the	Stream	ID	identifies	the	initiator	of	the	stream.	Clients	initiate	even-numbered	streams
(those	with	the	least	significant	bit	set	to	0);	servers	initiate	odd-numbered	streams	(with	the	bit	set	to	1).

The	second	least	significant	bit	(0x2)	of	the	Stream	ID	differentiates	between	unidirectional	streams	and	bidirectional
streams.	Unidirectional	streams	always	have	this	bit	set	to	1	and	bidirectional	streams	have	this	bit	set	to	0.

Stream	concurrency
QUIC	allows	for	an	arbitrary	number	of	streams	to	operate	concurrently.	An	endpoint	limits	the	number	of	concurrently
active	incoming	streams	by	limiting	the	maximum	stream	ID.

The	maximum	stream	ID	is	specific	to	each	endpoint	and	applies	only	to	the	peer	that	receives	the	setting.

Sending	and	Receiving	Data
Endpoints	use	streams	to	send	and	receive	data.	That	is	after	all	their	ultimate	purpose.	Streams	are	an	ordered	byte-
stream	abstraction.	Separate	streams	are	however	not	necessarily	delivered	in	the	original	order.

Stream	Prioritization
Stream	multiplexing	has	a	significant	effect	on	application	performance	if	resources	allocated	to	streams	are	correctly
prioritized.	Experience	with	other	multiplexed	protocols,	such	as	HTTP/2,	shows	that	effective	prioritization	strategies	have
a	significant	positive	impact	on	performance.

Streams

31



QUIC	itself	does	not	provide	frames	for	exchanging	prioritization	information.	Instead	it	relies	on	receiving	priority
information	from	the	application	that	uses	QUIC.	Protocols	that	use	QUIC	are	able	to	define	any	prioritization	scheme	that
suits	their	application	semantics.

When	HTTP/3	is	used	over	QUIC,	the	prioritization	is	done	in	the	HTTP	layer.

Streams

32



0-RTT
To	reduce	the	time	required	to	establish	a	new	connection,	a	client	that	has	previously	connected	to	a	server	may	cache
certain	parameters	from	that	connection	and	subsequently	set	up	a	0-RTT	connection	with	the	server.	This	allows	the	client
to	send	data	immediately,	without	waiting	for	a	handshake	to	complete.

0-RTT

33



Spin	Bit
One	of	the	perhaps	longest	design	discussions	within	the	QUIC	working	group	that	has	been	the	subject	of	several	hundred
mails	and	hours	of	discussions	concerns	a	single	bit:	the	Spin	Bit.

The	proponents	of	this	bit	insist	that	there	is	a	need	for	operators	and	people	on	the	path	between	two	QUIC	endpoints	to
be	able	to	measure	latency.

The	opponents	to	this	feature	do	not	like	the	potential	information	leak.

Spinning	a	bit
Both	endpoints,	the	client	and	the	server,	maintain	a	spin	value,	0	or	1,	for	each	QUIC	connection,	and	they	set	the	spin	bit
on	packets	it	sends	for	that	connection	to	the	appropriate	value.

Both	sides	then	send	out	packets	with	that	spin	bit	set	to	the	same	value	for	as	long	as	one	round	trip	lasts	and	then	it
toggles	the	value.	The	effect	is	then	a	pulse	of	ones	and	zeroes	in	that	bitfield	that	observers	can	monitor.

This	measuring	only	works	when	the	sender	is	neither	application	nor	flow	control	limited	and	packet	reordering	over	the
network	can	also	make	the	data	noisy.

Spin	Bit

34



User-space
Implementing	a	transport	protocol	in	user-space	helps	enable	quick	iteration	of	the	protocol,	as	it	is	comparatively	easy	to
evolve	the	protocol	without	necessitating	that	clients	and	servers	update	their	operating	system	kernel	to	deploy	new
versions.

Nothing	inherent	in	QUIC	prevents	it	from	being	implemented	and	offered	by	operating	system	kernels	in	the	future,	should
someone	find	that	a	good	idea.

Many	implementations

One	obvious	effect	of	implementing	a	new	transport	protocol	in	user-space	is	that	we	can	expect	to	see	many	independent
implementations.

Different	applications	are	likely	to	include	(or	layer	atop)	different	HTTP/3	and	QUIC	implementations	for	the	foreseeable
future.

User	space

35



API
One	of	the	success	factors	for	regular	TCP	and	programs	using	that,	is	the	standardized	socket	API.	It	has	well	defined
functionality	and	using	this	API	you	can	move	programs	between	many	different	operating	systems	as	TCP	works	the
same.

QUIC	is	not	there.	There	is	no	standard	API	for	QUIC.

With	QUIC,	you	need	to	pick	one	of	the	existing	library	implementations	and	stick	with	its	API.	It	makes	applications	"locked
in"	to	a	single	library	to	some	extent.	Changing	to	another	library	means	another	API	and	that	might	involve	a	lot	of	work.

Also,	since	QUIC	is	typically	implemented	in	user-space,	it	can't	easily	just	extend	the	socket	API	or	appear	similar	to	how
existing	TCP	and	UDP	functionality	do.	Using	QUIC	will	mean	using	another	API	than	the	socket	API.

API

36



HTTP/3
As	mentioned	previously,	the	first	and	primary	protocol	to	transport	over	QUIC	is	HTTP.

Much	like	HTTP/2	was	once	introduced	to	transport	HTTP	over	the	wire	in	a	completely	new	way,	HTTP/3	is	yet	again
introducing	a	new	way	to	send	HTTP	over	the	network.

HTTP	still	maintains	the	same	paradigms	and	concepts	like	before.	There	are	headers	and	a	body,	there	is	a	request	and	a
response.	There	are	verbs,	cookies	and	caching.	What	primarily	changes	with	HTTP/3	is	how	the	bits	gets	sent	over	to	the
other	side	of	the	communication.

In	order	to	do	HTTP	over	QUIC,	changes	were	required	and	the	results	of	this	is	what	we	now	call	HTTP/3.	These	changes
were	required	because	of	the	different	nature	that	QUIC	provides	as	opposed	to	TCP.	These	changes	include:

In	QUIC	the	streams	are	provided	by	the	transport	itself,	while	in	HTTP/2	the	streams	were	done	within	the	HTTP	layer.

Due	to	the	streams	being	independent	of	each	other,	the	header	compression	protocol	used	for	HTTP/2	could	not	be
used	without	it	causing	a	head	of	block	situation.

QUIC	streams	are	slightly	different	than	HTTP/2	streams.	The	HTTP/3	section	will	detail	this	somewhat.

HTTP/3

37



HTTPS://	URLs
HTTP/3	will	be	performed	using		HTTPS://		URLs.	The	world	is	full	of	these	URLs	and	it	has	been	deemed	impractical	and
downright	unreasonable	to	introduce	another	URL	scheme	for	the	new	protocol.	Much	like	HTTP/2	did	not	need	a	new
scheme,	neither	will	HTTP/3.

The	added	complexity	in	the	HTTP/3	situation	is	however	that	where	HTTP/2	was	a	completely	new	way	of	transporting
HTTP	over	the	wire,	it	was	still	based	on	TLS	and	TCP	like	HTTP/1	was.	The	fact	that	HTTP/3	is	done	over	QUIC	changes
things	in	a	few	important	aspects.

Legacy,	clear-text,		HTTP://		URLs	will	be	left	as-is	and	as	we	proceed	further	into	a	future	with	more	secure	transfers	they
will	probably	become	less	and	less	frequently	used.	Requests	to	such	URLs	will	simply	not	be	upgraded	to	use	HTTP/3.	In
reality	they	rarely	upgrade	to	HTTP/2	either,	but	for	other	reasons.

Initial	connection
The	first	connection	to	a	fresh,	not	previously	visited	host	for	a	HTTPS://	URL	probably	has	to	be	done	over	TCP	(possibly
in	addition	to	a	parallel	attempt	to	connect	via	QUIC).	The	host	might	be	a	legacy	server	without	QUIC	support	or	there
might	be	a	middle	box	in	between	setting	up	obstacles	preventing	a	QUIC	connection	from	succeeding.

A	modern	client	and	server	would	presumably	negotiate	HTTP/2	in	the	first	handshake.	When	the	connection	has	been
setup	and	the	server	responds	to	a	client	HTTP	request,	the	server	can	tell	the	client	about	its	support	of	and	preference	for
HTTP/3.

HTTPS://	URLs

38



Alt-svc
The	alternate	service	(Alt-svc:)	header	and	its	corresponding		ALT-SVC		HTTP/2	frame	are	not	specifically	created	for	QUIC
or	HTTP/3.	They	are	part	of	an	already	designed	and	created	mechanism	for	a	server	to	tell	a	client:	"look,	I	run	the	same
service	on	THIS	HOST	using	THIS	PROTOCOL	on	THIS	PORT".	See	details	in	RFC	7838.

A	client	that	receives	such	an	Alt-svc	response	is	then	advised	to,	if	it	supports	and	wants	to,	connect	to	that	given	other
host	in	parallel	in	the	background	-	using	the	specified	protocol	-	and	if	it	is	successful	switch	its	operations	over	to	that
instead	of	the	initial	connection.

If	the	initial	connection	uses	HTTP/2	or	even	HTTP/1,	the	server	can	respond	and	tell	the	client	that	it	can	connect	back
and	try	HTTP/3.	It	could	be	to	the	same	host	or	to	another	one	that	knows	how	to	serve	that	origin.	The	information	given	in
such	an	Alt-svc	response	has	an	expiry	timer,	making	clients	able	to	direct	subsequent	connections	and	requests	directly	to
the	alternative	host	using	the	suggested	alternative	protocol,	for	a	certain	period	of	time.

Example
An	HTTP	server	includes	an		Alt-Svc:		header	in	its	response:

Alt-Svc:	h3=":50781"

This	indicates	that	HTTP/3	is	available	on	UDP	port	50781	at	the	same	host	name	that	was	used	to	get	this	response.

A	client	can	then	attempt	to	setup	a	QUIC	connection	to	that	destination	and	if	successful,	continue	communicating	with	the
origin	like	that	instead	of	the	initial	HTTP	version.

Bootstrap	with	Alt-svc

39

https://tools.ietf.org/html/rfc7838


QUIC	streams	and	HTTP/3
HTTP/3	is	made	for	QUIC	so	it	takes	full	advantage	of	QUIC's	streams,	where	HTTP/2	had	to	design	its	entire	stream	and
multiplexing	concept	of	its	own	on	top	of	TCP.

HTTP	requests	done	over	HTTP/3	use	a	specific	set	of	streams.

HTTP/3	frames
HTTP/3	means	setting	up	QUIC	streams	and	sending	over	a	set	of	frames	to	the	other	end.	There's	but	a	small	fixed
number	(actually	nine	on	December	18th,	2018!)	of	known	frames	in	HTTP/3.	The	most	important	ones	are	probably:

HEADERS,	that	sends	compressed	HTTP	headers
DATA,	sends	binary	data	contents
GOAWAY,	please	shutdown	this	connection

HTTP	Request
The	client	sends	its	HTTP	request	on	a	client-initiated	bidirectional	QUIC	stream.

A	request	consists	of	a	single	HEADERS	frame	and	might	optionally	be	followed	by	one	or	two	other	frames:	a	series	of
DATA	frames	and	possibly	a	final	HEADERS	frame	for	trailers.

After	sending	a	request,	a	client	closes	the	stream	for	sending.

HTTP	Response
The	server	sends	back	its	HTTP	response	on	the	bidirectional	stream.	A	HEADERS	frame,	a	series	of	DATA	frames	and
possibly	a	trailing	HEADERS	frame.

QPACK	headers
The	HEADERS	frames	contain	HTTP	headers	compressed	using	the	QPACK	algorithm.	QPACK	is	similar	in	style	to	the
HTTP/2	compression	called	HPACK	(RFC	7541),	but	modified	to	work	with	streams	delivered	out	of	order.

QPACK	itself	uses	two	additional	unidirectional	QUIC	streams	between	the	two	end-points.	They	are	used	to	carry	dynamic
table	information	in	either	direction.

QUIC	streams	and	HTTP/3

40

https://httpwg.org/specs/rfc7541.html


HTTP/3	Prioritization
One	of	the	HTTP/3	stream	frames	is	called		PRIORITY	.	It	is	used	to	set	priority	and	dependency	on	a	stream	in	a	way	similar
to	how	it	works	in	HTTP/2.

The	frame	can	set	a	specific	stream	to	depend	on	another	specific	stream	and	it	can	set	a	"weight"	on	a	given	stream.

A	dependent	stream	should	only	be	allocated	resources	if	either	all	of	the	streams	that	it	depends	on	are	closed	or	it	is	not
possible	to	make	progress	on	them.

A	stream	weight	is	value	between	1	and	256	and	it	is	specified	that	streams	with	the	same	parent	should	be	allocated
resources	proportionally	based	on	their	weight.

Prioritization

41



HTTP/3	Server	push
HTTP/3	server	push	is	similar	to	what	is	described	in	HTTP/2	(RFC	7540),	but	uses	different	mechanisms.

A	server	push	is	effectively	the	response	to	a	request	that	the	client	never	sent!

Server	pushes	are	only	allowed	to	happen	if	the	client	side	has	agreed	to	them.	In	HTTP/3	the	client	even	sets	a	limit	for
how	many	pushes	it	accepts	by	informing	the	server	what	the	max	push	stream	ID	is.	Going	over	that	limit	will	cause	a
connection	error.

If	the	server	deems	it	likely	that	the	client	wants	an	extra	resource	that	it	hasn't	asked	for	but	ought	to	have	anyway,	it	can
send	a		PUSH_PROMISE		frame	(over	the	request	stream)	showing	what	the	request	looks	like	that	the	push	is	a	response	to,
and	then	send	that	actual	response	over	a	new	stream.

Even	when	pushes	have	been	said	to	be	acceptable	by	the	client	before-hand,	each	individual	pushed	stream	can	still	be
canceled	at	any	time	if	the	client	deems	that	suitable.	It	then	sends	a		CANCEL_PUSH		frame	to	the	server.

Problematic
Ever	since	this	feature	was	first	discussed	in	the	HTTP/2	development	and	later	after	the	protocol	shipped	and	has	been
deployed	over	the	Internet,	this	feature	has	been	discussed,	disliked	and	pounded	up	in	countless	different	ways	in	order	to
get	it	to	become	useful.

Pushing	is	never	"free",	since	while	it	saves	a	half	round-trip	it	still	uses	bandwidth.	It	is	often	hard	or	impossible	for	the
server-side	to	actually	know	with	a	high	level	of	certainty	if	a	resource	should	be	pushed	or	not.

Server	push

42

https://httpwg.org/specs/rfc7540.html


HTTP/3	compared	to	HTTP/2
HTTP/3	is	designed	for	QUIC,	which	is	a	transport	protocol	that	handles	streams	by	itself.

HTTP/2	is	designed	for	TCP,	and	therefore	handles	streams	in	the	HTTP	layer.

Similarities
The	two	protocols	offer	clients	virtually	identical	feature	sets.

Both	protocols	offer	streams

Both	protocols	offer	server	push	support

Both	protocols	have	header	compression,	and	QPACK	and	HPACK	are	similar	in	design.

Both	protocols	offer	multiplexing	over	a	single	connection	using	streams

Both	protocols	do	prioritization	on	streams

Differences
The	differences	are	in	the	details	and	primarily	there	thanks	to	HTTP/3's	use	of	QUIC:

HTTP/3	has	better	and	more	likely	to	work	early	data	support	thanks	to	QUIC's	0-RTT	handshakes,	while	TCP	Fast
Open	and	TLS	usually	sends	less	data	and	often	faces	problems.

HTTP/3	has	much	faster	handshakes	thanks	to	QUIC	vs	TCP	+	TLS.

HTTP/3	does	not	exist	in	an	insecure	or	unencrypted	version.	HTTP/2	can	be	implemented	and	used	without	HTTPS	-
even	if	this	is	rare	on	the	Internet.

HTTP/2	can	be	negotiated	directly	in	a	TLS	handshake	with	the	ALPN	extension,	while	HTTP/3	is	over	QUIC	so	it
needs	an		Alt-Svc:		header	response	first	to	inform	the	client	about	this	fact.

Comparison	with	HTTP/2

43



Criticism

UDP	will	never	work
A	lot	of	enterprises,	operators	and	organizations	block	or	rate-limit	UDP	traffic	outside	of	port	53	(used	for	DNS)	since	it	has
in	recent	days	mostly	been	abused	for	attacks.	In	particular,	some	of	the	existing	UDP	protocols	and	popular	server
implementations	for	them	have	been	vulnerable	for	amplification	attacks	where	one	attacker	can	make	a	huge	amount	of
outgoing	traffic	to	target	innocent	victims.

QUIC	has	built-in	mitigation	against	amplification	attacks	by	requiring	that	the	initial	packet	must	be	at	least	1200	bytes	and
by	restriction	in	the	protocol	that	says	that	a	server	must	not	send	more	than	three	times	the	size	of	the	request	in	response
without	receiving	a	packet	from	the	client	in	response.

UDP	is	slow	in	kernels
This	seems	to	be	the	truth,	at	least	today	in	2018.	We	can	of	course	not	tell	how	this	will	develop	and	how	much	of	this	is
simply	the	result	of	UDP	transfer	performance	not	having	been	in	developers'	focus	for	many	years.

For	most	clients,	this	"slowness"	is	probably	never	even	noticeable.

QUIC	takes	too	much	CPU
Similar	to	the	"UDP	is	slow"	remark	above,	this	is	partly	because	the	TCP	and	TLS	usage	of	the	world	has	had	a	longer
time	to	mature,	improve	and	get	hardware	assistance.

There	are	reasons	to	expect	this	to	improve	over	time.	The	question	is	how	much	this	extra	CPU	usage	will	hurt	deployers.

This	is	just	Google
No	it	is	not.	Google	brought	the	initial	spec	to	the	IETF	after	having	proved,	on	a	large	Internet-wide	scale,	that	deploying
this	style	of	protocol	over	UDP	actually	works	and	performs	well.

Since	then,	individuals	from	a	large	number	of	companies	and	organizations	have	worked	in	the	vendor-neutral
organization	IETF	to	put	together	a	standard	transport	protocol	out	of	it.	In	that	work,	Google	employees	have	of	course
been	participating,	but	so	have	employees	from	a	large	number	of	other	companies	that	are	interested	in	furthering	the
state	of	transport	protocols	on	the	Internet,	including	Mozilla,	Fastly,	Cloudflare,	Akamai,	Microsoft,	Facebook	and	Apple.

This	is	too	small	of	an	improvement
That	is	not	really	a	critique	but	an	opinion.	Maybe	it	is,	and	maybe	it	is	too	little	of	an	improvement	so	close	in	time	since
HTTP/2	was	shipped.

HTTP/3	is	likely	to	perform	much	better	in	packet	loss-ridden	networks,	it	offers	faster	handshakes	so	it	will	improve	latency
both	as	perceived	and	actual.	But	is	that	enough	of	benefits	to	motivate	people	to	deploy	HTTP/3	support	on	their	servers
and	for	their	services?	Time	and	future	performance	measurements	will	surely	tell!

Common	criticism

44



The	specifications
Here	is	a	collection	of	the	latest	official	drafts	for	the	various	parts	and	components	of	QUIC	and	HTTP/3.

Invariants
Version-Independent	Properties	of	QUIC

Transport
QUIC:	A	UDP-Based	Multiplexed	and	Secure	Transport

Recovery
QUIC	Loss	Detection	and	Congestion	Control

TLS
Using	TLS	to	Secure	QUIC

HTTP
Hypertext	Transfer	Protocol	Version	3	(HTTP/3)

QPACK
QPACK:	Header	Compression	for	HTTP/3

The	specifications

45

https://tools.ietf.org/html/draft-ietf-quic-invariants-07
https://tools.ietf.org/html/draft-ietf-quic-transport-23
https://tools.ietf.org/html/draft-ietf-quic-recovery-23
https://tools.ietf.org/html/draft-ietf-quic-tls-23
https://tools.ietf.org/html/draft-ietf-quic-http-23
https://tools.ietf.org/html/draft-ietf-quic-qpack-10


QUIC	v2
In	order	to	get	the	most	possibly	focus	on	the	core	QUIC	protocol	and	be	able	to	ship	it	on	time,	several	features	that	were
originally	planned	to	be	part	of	the	core	protocol	have	been	postponed	and	are	now	planned	to	instead	get	done	in	a
subsequent	QUIC	version.	QUIC	version	2	or	beyond.

The	author	of	this	document	does	however	have	a	rather	faulty	crystal	ball	so	we	can	not	tell	for	sure	exactly	what	features
will	or	will	not	appear	in	version	2.	We	can	however	mention	some	of	the	features	and	things	that	explicitly	have	been
removed	from	the	v1	work	to	be	"worked	on	later"	and	that	then	possibly	might	appear	in	a	version	2.

Forward	Error	Correction
Forward	error	correction	(FEC)	is	a	method	of	obtaining	error	control	in	data	transmission	in	which	the	transmitter	sends
redundant	data	and	the	receiver	recognizes	only	the	portion	of	the	data	that	contains	no	apparent	errors.

Google	experimented	with	this	in	their	original	QUIC	work	but	it	was	subsequently	removed	again	since	the	experiments	did
not	turn	out	well.	This	feature	is	subject	for	discussion	for	QUIC	v2	but	probably	takes	for	someone	to	prove	that	it	actually
can	be	a	useful	addition	without	too	much	penalty.

Multipath
Multipath	means	that	the	transport	can	by	itself	use	multiple	network	paths	to	maximize	resource	usage	and	increase
redundancy.

The	SCTP	proponents	of	the	world	like	to	mention	that	SCTP	already	features	multipath	and	so	does	modern	TCP.

Unreliable	data
It	has	been	discussed	to	offer	"unreliable"	streams	as	an	option,	that	would	then	allow	QUIC	to	also	replace	UDP-style
applications.

Non-HTTP	adaptions
DNS	over	QUIC	was	one	of	the	early	mentioned	non-HTTP	protocols	that	just	might	get	some	attention	once	QUIC	v1	and
HTTP/3	ship.	But	with	a	new	transport	like	this	having	been	brought	on	to	the	world	I	cannot	imagine	that	it	will	stop	there.

QUIC	v2

46


	Introduction
	Why QUIC
	Remember HTTP/2
	TCP head of line blocking
	TCP or UDP
	Ossification
	Secure
	Reduced latency

	Process
	IETF
	Experience from HTTP/2
	Status

	Protocol features
	UDP
	Reliable
	Streams
	In Order
	Fast handshakes
	TLS 1.3
	Transport and application
	HTTP/3 over QUIC
	Non-HTTP over QUIC

	How QUIC works
	Connections
	Connections use TLS
	Streams
	0-RTT
	Spin Bit
	User space
	API

	HTTP/3
	HTTPS:// URLs
	Bootstrap with Alt-svc
	QUIC streams and HTTP/3
	Prioritization
	Server push
	Comparison with HTTP/2

	Common criticism
	The specifications
	QUIC v2

